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A variational method involving minimization of the energy dissipation rate 
which was previously developed for transport in polymer systems is applied here 
to flow of a continuum solvent through a thin membrane. The membrane is 
represented by an array of spherical particles undergoing Brownian motion, 
subject to various interactions with one another and with the motion of the 
solvent. General upper bounds on the solvent permeability of the membrane are 
obtained in terms of equilibrium distribution functions, and applications of the 
method are illustrated for the case where membrane elements are confined to 
a plane. Calculations which treat all beads equivaIently give permeability esti- 
mates whose dependence on the number n of beads per unit area of membrane 
has the form, a t  low n, 

K = (6nyn)-l(l--an+ ...), 

where 7 is the solvent viscosity and a is a constant. More-elaborate trials which 
allow the drag on a bead to be influenced by the distribution of other bends in the 
vicinity give the stronger bounding estimate 

K = (6nyn)-1(l+a’nlnn +...). 

Comparison with a self-consistent field approach suggests that this logarithmic 
behaviour is the true first-order correction. 

1. Introduction 
The permeability of membranes to solvent and solute flows has been exten- 

sively studied in the literature, particularly with regard to biological systems 
and desalination processes. Theoretical treatments are still for the most part of a 
macroscopic nature, the most common approaches resulting in linear pheno- 
menological relations with transport coefficients to be determined by experiment 
(Kedem & Katchalsky 1958; Blank 1962). More-detailed models sometimes 
postulate a static porestructure (Solomon 1960; Luzattiet al. 1966); an alternative 
has been suggested by Blank (1964), who considers fluctuations in membrane 
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structure as creating sites for solute permeation. This approach is promising, but 
it neglects solvent flow and does not really treat the dynamic character of the 
fluctuations. 

The reason for such simplifications is obvious : more-realistic membrane 
models are exceedingly difficult to treat. A complete model would have to include 
explicitly forces between membrane and solute particles, as well as perturba- 
tions in solvent flow caused by the membrane. Membrane transport a t  this level 
of detail must be represented by a Liouville equation, or a t  least by a many- 
particle Brownian motion in which different particles move subject to complex 
mutual interactions. 

An approach is suggested by the work of polymer physical chemists (Kirkwood 
& Risemann 1948; Rouse 1953; Zimm 1956), who have had considerable success 
treating the related problem of the motion of a polymer chain in solution. The 
idea we wish to advance here is that  a membrane may be considered as a giant 
macromolecule moving relative to the solvent, and may thus be discussed along 
lines similar to those developed by Kirkwood & Risemann (1948) and their suc- 
cessors. I n  particular, we shall adapt avariational method used by Rotne &Prager 
(1969) for the calculation of polymer diffusion coefficients to the permeation of 
solvent through a thin membrane. 

2. The model 
The membrane is considered to be a random array of spherical beads, each 

with radius a, representing segments of polymer chains. This bead radius is 
the only free parameter in our calculations; for a series of membranes prepared 
from the same material but differing, for example, in solvent content, the same 
value of a must of course apply to all members. The instantaneous location of the 
ith bead is given by the vector ri = (xi, yi,zi), and interactions (primary bonds, 
van der Waals forces, etc.) between beads are characterized by a potential func- 
tion U p l ,  r2, . . .); if the membrane is a thin film centred about the plane z = 0, 
then U should increase fairly rapidly with increasing Izil, since otherwise 
individual beads would simply be carried away by convection and diffusion 
processes. 

The solvent which is passing through the membrane is represented as a con- 
tinuous incompressible Newtonian fluid (of viscosity 7) in creeping flow occupying 
all space exterior to  the membrane beads. This neglect of the molecular nature of 
the solvent probably limits the applicability of the model to membranes having 
pores large compared with the solvent molecules, such as those investigated by 
Yasuda, Lamaze & Peterlin (197 I). If solute molecules are present they can be 
represented as beads whose interactions with one another and with membrane 
particles must be included in the potential function 0; in this paper we consider 
only solvent transport. 

In addition to the approximations inherent in the model, we shall also assume 
that the driving forces responsible for transport through the membrane are small, 
so that  the various configurational distribution functions for the membrane 
particles will deviate only slightly from their equilibrium forms. This is not in 
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practice a severe restriction, since i t  merely limits the discussion to the usual 
linear phenomenological relationships between forces and fluxes. 

The specific problem to be treated in this paper is the calculation of the mean 
volume flux U of solvent through a membrane of infinite extent in the x, y plane 
induced by a pressure drop from a value Po + A P  a t  z = - co to Pat z = + co.t The 
ratio K = U/AP is the solvent permeability of the membrane, and we shall obtain 
rigorous upper bounds on K for the model described in this section. 

3. Problem and variational method 
The direct treatment of the problem just formulated would proceed through 

a many-particle diffusion equation for the joint configurational distribution 
function Y(t, rl, r, . ..) of the membrane beads. If v, is the velocity of the ith 
bead at  time t ,  then one can write down a continuity equation which under steady- 
state conditions becomes 

a -- - - 2  - ( V i Y ) .  ay 
at i ar, 

To obtain the required diffusion equation, this must be supplemented by a 
relationship between the vi and the forces fl, f,, . . . , acting on individual beads, 
as well as by a further relation between fi and'€".$ The latter is a straightforward 
generalization of the familar thermodynamic relation between forces and poten- 
tial gradients : 

where kis the Boltzmann constant, T is the temperature and 

Ye(rl ,  r,, ...) = e-UjkT 

is the equilibrium distribution function when AP is zero. 
The relation between the vi and fi is a much more difficult matter. For an 

isolated spherical bead, the creeping-flow assumption we have made would lead 
to  the simple Stokes relation 

vi = U$ + fi/6narj 

(2 is a unit vector in the z direction). In the actual membrane, hydrodynamic 
interaction between beads produces the more complex result 

vi = &+- 

e-U/kTd3r,d3r2 ... /(S 

(3) 
1 

Dij (rl, r,, . . .) . fj, ET j 

where the second-order tensor coefficients Dij are still to be determined. They 
can be thought of as generalized diffusion coefticients with each Dij having a 

t The specification of pressure far from the membrane rather than at the membrane 
surfaces is necessary here, since in our model the membrane surfaces are not sharply defined, 
and may indeed be quite irregular. 

$ These forces must of course be exactly balanced by the hydrodynamic drag force on 
each particle. 

18-2 
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3 x 3 matrix realization. To obtain them is a problem in hydrodynamics, requiring 
the solution of the creeping- flow Navier-Stokes equations for the velocity field 
u(r), pressure P(r) and viscous stress T(r )  a t  every point r in the region V 
occupied by solvent: 

V . ( T - P I )  = 0, (4) 
( 5 )  T = q[Vu + (VU)*], 

v . u  = 0, 
with boundary conditions 

u(r) = vi for r on Si (for all i), ( 7 ) t  

where X i  is the surfa.ce of the ith bead, 

1 {;+AP as ZJ-OO, 
P(r) = 

as z - f o o .  

Once the system (4)-(8) has been solved for a given set of bead positions and 
velocities, the forces fi may be calculated by integration of the normal component 
of the stress over the surface of each bead: 

n 

(Gi is the inward unit normal a t  a point r on Xi). The mean volume flux ;il and the 
Dij coefficients in (3) for that  particular configuration may then be determined. 

Of course, complete execution of the scheme just outlined is not feasible for 
the many-particle system with which we are concerned. However, it is possible 
to  formulate a fully equivalent variational problem which permits us to  use 
approximate solutions to  obtain upper-bound estimates for the membrane 
permeability. The procedure is essentially that of Rotne & Prager (1969), and 
we give here only an outline of the method. It involves the minimization of the 
energy dissipation rate with respect t o  a set of trial forces f,' (rl, r2, . . .), a trial 
pressure distribution P*(r; rl, r,, . . . ; f:, f,*, . . .) and a viscous stress distribution 
T*(r; rl, r,, . . . ; f:, f,*, . . .). Conditions for acceptability as trial functions are that 
(i) the f,' be derivable from some trial distribution functionYT*(r,, r,, . . .) accord- 
ing t o  (2);  (ii) T* be a symmetric traceless tensor, compatible (a) with the f: 
according to  (9) and ( b )  with P* according to  ( 4 ) ;  and (iii) P* be consistent with 
the applied pressure differences as required by (8). 

The choice of trial functions is similar t o  that used by Rotne & Prager, but 
in order to avoid edge effects we shall minimize the energy dissipation rate per 
unit area of membrane, and introduce a limiting process which allows the mem- 
brane area to  become infinite. First consider the surface S' enclosing a cylinder 

Condition ( 7 )  ignores the possibility of bead rotation. This feature can be included by 
adding a torque balance condition for each bead, and a rotational term w i  x (r - ri) to each 
vi, where w i  is the angular velocity of bead i. Allowing the possibility of rotation will natur- 
ally increase the rate of energy dissipation produced by a given AP and therefore increase 
the permeability. However, the trial functions to be chosen later [equation (13)] for use in a 
variational approach to the problem also satisfy the new conditions, so the final upper bound 
on the permeability is valid whether or not the membrane beads are allowed to rotate, 
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with axis in the z direction, extending from x = - L to  x = L, and having a 
circular cross-section of area A ;  such a surface will cut N = nA beads (numbered 
1 to N)  out of an infinite membrane containing n beads per unit area and centred 
on the plane x = 0. We designate by V' the interior of this cylinder and by V 
the region consisting of all points lying in V' but not inside one of the membrane 
beads. At any point r in V ,  the local energy dissipation rate per unit volume cor- 
responding to  a trial stress T* is T*: T*/27. The rate e* of energy dissipation per 
unit area of the infinite membrane is then taken as the limit 

where Y, ( rl, . . . , rN) is the true N-bead distribution function and T: is the tria.1 
stress when there are N beads in V'.  

If, as we have assumed, AP (and therefore ii) is small, then Y, in (10) can be 
approximated by the equilibrium N-bead distribution function Y,,e (i.e. the 
distribution function for AP = 0) and we can write 

If the V!N,e approximation is valid, then i t  can be shown (Woodbury & Prager 
1964; Keller, Rubenfeld & Molyneux 1967) that the minimization of e* subject 
to  conditions (i)-(iii) is completely equivalent to solving the diffusion problem 
(1)-(9). Furthermore, any approximate set of functions T*, P*, ff and Y* satis- 
fying (i)-(iii) will give an estimate E* for the energy dissipation rate which is 
greater than the true rate e. Since, in terms of macroscopic variables, 

e = ZAP = K ( A P ) ~ ,  
it follows that any such set of trial functions can also be used to obtain an upper 
bound on the solvent permeability of the membrane: 

This is the fundamental inequality upon which our calculations will be based. 
K < E*/(AP)~.  (12) 

4. Choice of trial functions 
Our formulation of suitable trial functions proceeds in two stages: first, the 

selection of a stress distribution {T*, P*) compatible with a given set of forces 
ff, and second, the selection of the ff themselves. For T* we shall follow Rotne 
& Prager (1969), who write 

iv 

i= l  
Tz(r) = TT(r-ri), (13) 

where 7: (r - ri) is the viscous stress field which would surround bead i if the 
force acting on it were f? and there were no other particles present: 

%(P) = 87 (aw,*/ap + (aWi*/ap)T), 

w:( p) = (kT)-l (D(O)( p) + Dm( p)) . f: , 
(14) 
(15) 
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w: is just the Stokes-Oseen velocity distribution around the i th bead. For 
later convenience we have split the tensor coefficient in (15) into a far contribu- 
tion D(O), dominant at large distances p, and a near part D(l), which becomes im- 
portant as p + a. The trial stress (13) and the associated pressure distribution 
Pg determined by it according to (4) will satisfy conditions (ii) and (iii) provided 
that 

1 5 f: = AP4. (17) A i=l 

I n  order to obtain reasonably simple results, we replace the integration over 
the region V (consisting of all points lying exterior to the membrane beads) 
by an integration over all space, thereby making B* larger still and reinforcing 
the inequality (12). With this modification, substitution of (13) into ( I  1) gives, 
after some manipulation as described in Rotne & Prager,? 

where 

K ( A P ) ~  < e* < lim lim {$ p G g h P + ~ [ ~  1 .../v,Y,,,(r,, ..., rN) 

I) 
L+w A-+m 

N N  

Z = l j = ,  
x r, (Dz(ri-rj):f:f7)d3r ,... d3rN , (18) 

(kT/67i-q) I (i =j) 
Do)( p) + 2Dc1)( p) (i += j) 

and Ti; is the mean solvent flux corresponding to the stress 75: 

x G(r) d2r d3rl, . . . , d3r,\, ( 2 0 )  
(8’ is the outer boundary of the system). 

The limit A -+ 03 in (18) must be taken with care; in particular, it is not per- 
missible to invert the limit and summation processes, since both AG; AP and 
the multiple-integral terms in (18) increase faster than A as A becomes large, 
although their sum becomes proportional to A. The difficulty arises from the slow 
decay of w: and Dz with increasing Ir - ril : both vanish only as Ir - ril-l. 

This is essentially the same difficulty as is faced in all calculations of sedimenta- 
tion velocity, viscosity and particle forces in suspensions. One way to resolve 
the divergence is to subtract off a quantity which has the same long-range 
behaviour as the terms comprising the sum, yet whose mean value is known 
exactly. This technique was used successfully by Batchelor (1972) and Batchelor 
& Green (1972) in treating the sedimentation and bulk stress of a suspension of 
spheres. 

I n  our case the problem may be cured by a rearrangement of ( 18). Physically, 
the rearrangement is motivated by the realization that when A and L are large, 
so that most points on S‘ are far from the membrane, Ti; will become insensitive 
to the detailed membrane structure and to the forces f: acting on individual 
beads, and depend only on the total force per unit area. The argument is similar 

t A derivation of (19) by more physical arguments has been given by Yamakawa (1970). 

1 
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to  that  used by Hasimoto (1959) for A ow past a periodic array of spheres and later 
by Childress (1972) for fixed random arrays; these authors recognized that it is 
essential to take account of the mean pressure gradient in order that the sum of 
velocities and forces due to  an infinite number of elements will converge. The 
term Gg is this mean force contribution, and it must be modified and combined 
with the double sum in (18) so that convergence is assured. 

We begin by noting that in the limit of large A and L only the contribution D(O) 
in the expression (15) for w: need be retained in calculating iiz, since D(l)(p) 
vanishes as p-3 as p + co. Thus, if we are only interested in the limit A + co, 
L + co, equation (20) may be replaced by 

where q*(z‘) d3r’ is the average force exerted on the membrane beads lying in a 
volume element d3r’ centred on the plane x = 2’: 

N 

.:=I 
q*(z’) = S,, . . . I P ~ N , e ( r l ,  . . . , r,) x 6(r’ - ri) f: (rl, .. ., rN) d3r ... d3r, 

(S, q*(z’) d3r’ = P A  AP)  . 
] (22) 

It is also convenient to define here a two-point force density distribution 

(S*(r’, r”) +q*(z’)q*(x”) as Ir’ - r”l +a). 
(23) 

The rearrangement now consists of writing the right-hand side of (18) in terms 
of the force density correlation (S*(r’, r”) - q*(z) q*(z’)), which, since it goes to 
zero as Ir’ - r”l becomes large, allows us to take the limit A, L -+ co in (18) on 
a term-by-term basis. In  this way we arrive at the inequality 

I 
/ : r n  D(1) (r’ - rN) : (24) i (S*“ ’ ,Z ’ ’ )  - q*(z’) q*(x”))d~gdz’dz”+- kT 

5 * ( 4 , 2 ’ . 2 ” ) d ~ ~ ~ Z ’ d z ~ ’ ] ,  

in which 5 = (r’-r”).(I-h?) is the component of r’-r” normal to the x 
direction, 

and the integration over 5 extends over the entire x, y plane. The inequality (24) 
is our basic result; it remains valid for our general model provided that q*, 
S*, and (f*’) are derived from a set of fr satisfying condition (i). 
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5. An example 
To illustrate how (24)  is applied, we shall in this and the following section 

determine upper bounds on the permeability for a simplified membrane model 
in which the bead centres are constrained to  lie in the plane z = 0, although they 
may still move in the x and y direction. The two-point force correlation then has 
the form 

For the f: we shall first make the simplest possible choice (to be refined in 5 6) 
by setting them all equal to the mean force per beadfk, which clearly satisfies 
condition (i) . 

With these simplifications it is easy to see from (22) and ( 2 3 )  that q*(z) = n@(z)2 
and s*(<) = nzpg(6) 22, where g(5) is the equilibrium pair distribution function 
for the membrane beads, normalized to unity as -f co. Thus only the zz com- 
ponent of the integrals in (24) is needed and the bound on the permeability 
becomes 

s*g, x ’ ,  2”) = S(2’) S(z”)  s*(EJ. 

(g(5) - l )5- ld2g+ 4na3 

For an explicit result, we still need the pair distribution g(5). If the beads are 
assumed to interact in pairwise additive fashion, so that 

then, as shown in Hill (1956, p. 202), g( 5) can be expanded as a power series in the 
bead density n : 

x [exp ( - $( Ig - s’])/k5”) - 11 d2gd2g’ + . . . . (26) 

If we use the hard-sphere potential, the integral in (26) can be evaluated, and we 
find that 

I 
0 (5 6 2 4 ,  

g(5) = 1 (6 > 4a) ,  } (27)  
1 + $n[ - 4a2 sin - l (5 /4a)  - 2a5( 4 - t2/4a2)3 + 97r,3 (2a < 5 6 4a). 

K < (67r~an) - l [  1 - + u - 3a2.. .I, (28) 

i 
Finally, substitution into (24) gives 

where u is the area fraction of the membrane which is occupied by beads: 

u = ma2. 

The inequality (28) is, of course, applicable only when a is small, but it should 
be remembered that this limitation was introduced by the expansion (26) of 
the distribution function; the parent inequality (25) is valid a t  all values of CT, 
right up to the dense-packing maximum (a = n/2J3 = 0.91). Whether the 
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upper bound given by (25) is also a good estimate for the permeability is another 
matter, to be settled by investigating the improvements obtainable from more 
elaborate trial functions; such an investigation is the subject of 8 6. But even with 
this simple treatment, we have shown so far that, for the many-particle Brownian 
motion model which we have used, rigorous upper bounds on the permeability 
can be obtained in terms of equilibrium distribution functions. Improved results 
will inevitably require distribution functions of higher order than the simple 
pair distribution used in (25), but a t  any level the calculation of the permeability 
bound is reduced to a problem in equilibrium statistical mechanics. 

6. More-general trial functions 
We shall now refine the Permeability estimates of $5, again with particular 

attention to the case where the number n of beads per unit area is small. Why 
this emphasis on a situation which is unlikely to occur in practice ? Because the 
highly porous membrane raises fundamental questions concerning membrane - 
permeant interaction which will be encountered in models where the membrane 
elements are more closely packed. These problems have their origin in the long- 
range nature of hydrodynamic interactions between membrane beads: the per- 
turbation of solvent flow caused by a bead moving through the solvent falls off 
only as the reciprocal of the first power of the distance from the bead, behaving 
in this respect rather like the Coulomb potential around a charge. 

Just  as the Coulomb interaction between ions produces unexpectedly early 
departure from ideal behaviour in electrolyte solutions, so too does hydrodynamic 
interaction between the particles of a dilute array of spheres result in significant 
corrections to simple Stokes-law behaviour a t  remarkably low values of the bead 
concentration. Some time ago, Brinkman (1948) showed that the three-dimen- 
sional permeability coefficient K’ of a bed of spheres containing c particles per 
unit volume is given by 

K’ = ( 6 . r r a y c ) - l ( 1 - ~ 2 ~ ( ~ 7 ~ a ~ c ) ~ +  ...), (29) 

a result which has recently been placed on a more rigorous footing by Childress 
(1 972). The appearance of non-integer powers of c in (29) means that any attempt 
to correct for hydrodynamic interaction by examining the flow around isolated 
pairs, triplets, etc., of beads will fail, because the resulting permeability correction 
will always be expressible as a Taylor series in c;  even the dilute bed of spheres 
must be considered as a many-particle problem. 

It seems likely that similar care is needed in treating flow through a highly 
porous membrane, and that the permeability estimate (28) can be significantly 
improved through the use of better trial functions. We shall show that this is 
indeed the case, a t  least at low n, although the improvement is less drastic than 
for the three-dimensional bed of spheres. 
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6.1. Trial functions 
We again begin with the inequality (24), which, if we assume that the beads 
are isotropically distributed in the plane of the membrane and restrict ourselves 
to trial forces having no components parallel to the membrane plane, can be 

where the two-point pressure distribution s is given by 

0) = 5 1 . . . G i )  S(5 j  - P) YN,ed251.. .@EN (31) 
i , j=l  A 
i +i 

and the averages f and f" are defined as 

We derived the inequality (28) by choosing fi = ffor all i. To get a better result 
we must take into account the fact that  f i  should really depend on the distribu- 
tion of other membrane particles in the vicinity of particle i. Since the simplified 
model we are using restricts the centres of the membrane beads to lie on a plane, 
the requirement that  admissible trial forces be derivable from some potential 
function (condition (i)) applies only to components parallel to that plane, and is 
trivially satisfied by our having taken these to be zero. Thus any choice of the fi 
will lead to a valid bound on the permeability; in order to int,roduce interactions 
between beads, we write 

fi = f o  n [ 1 + h ( l L 4 j I ) l ,  (32) 
i (+i) 

where f,, is a constant and h is an as yet undetermined function of the distance 
between beads i andj ,  the only restriction on which is that  it be integrable over 
the membrane plane. We expect, of course, to choose h so as to minimize the 
right-hand side of (30),  but first we must deal with the calculation off,f2 and s, 
which are no longer, as in 5 5, obt,ainable from one- and two-particle distributions 
alone. 

6.2. Calculation o f f7 f2and s 

Since our concern here is primarily with highly porous membranes, we shall 
seek to develop a series expansion around the limit n + 0. I n  doing so it is impor- 
tant to remember that there are two expansion parameters: the bead density n 
and the unknown function h; we expect the optimum h itself to depend on n, 
and in fact we shall see that there is a singularity a t  n = 0. The proper strategy 
is therefore to expand in powers of n, but to evaluate each coefficient of the 
expansion to all powers of h. 

We illustrate the procedure with the calculation off. From (31) and (32) we 
have 
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where, for hard-core interactions, the equilibrium N-bead distribution is 

fi [ 1 + 4 5 1 - 5 m l ) l  
l , m = l  

l c m  
Y N , e  = N s, ... J n [I+ w(I5l’ -Em* I )I d25, . . . d25” 

A l’,m‘=l 
l’tm’ 

763 

(34) 

We now carry out a Mayer cluster expansion in w ,  the zeroth term of which is 
just the value offin the limit a + 0 ,  n finite: 

as N = nA-+co. 
Higher-order terms may also be obtained: 

By similar arguments, 

6.3. Optimization 
For any given h function, (35), (36) and (37) are perfectly straightforward series 
in ascending powers of n. However, we intend to optimize with respect to h, 
and this, as we have already remarked, leads to an optimum h which may 
vary with n. It is therefore uncertain a t  this point whether the higher-order 
terms in (35)-(37) become negligible as n -+ 0. We shall tentatively assume that 
they do, and also that the exponentials appearing in (35)-(37) may be replaced 
by their linear approximations. These assumptions (and others to be made below) 
will be justified aposteriori, that is we shall use them in carrying out the optimiza- 
tion and then show that the terms omitted are indeed small compared with those 
retained. in calculating the permeability bound (30). 



7 64 G. H. Malone, T .  E.  Hutchinson and X. Prager 

With the approximations just described, the inequality (30) becomes, after 
substitution of (35)-( 37)  and rearrangement, 

(38) 
Even in this reduced form, the right-hand side of ( 3 8 )  is not trivial to minimize. 
However, further simplification is possible if we recall that  the main purpose of 
introducing the trial function (32 )  was t o  allow for long-range hydrodynamic 
interaction between beads. The most important feature of the h function as n --f 0 
is therefore its behaviour a t  p % a, and for sufficiently small n we may accordingly 
omit all but the leading term in alp in each of the integrals in (38); in addition, 
we shall overlook the excluded region p < 2a and extend the integrals over the 
entire membrane plane. 

The result of all this is the bound 

to be minimized with respect to &(p),  subject to the restriction [see ( 3 5 ) ]  

The resulting integral equation for the optimum k is 
K(p) = - I  for p < 2a. (40) 

3a1 3an ' ( k ' )  d25,, K(p) = -h(p)----- ~ 

4 P 4 I , E ' - P l  
where h(p) is a Lagrangian multiplier function which vanishes for p > 2a, and 
must for p < 2a be determined so that h satisfies (40). 

Actually, we shall solve (41) with h set equal to zero everywhere, and then 
simply replace the solution by = - 1 in the interval 0 < p < 2a. On this basis 
&(p) for p > 2a is readily found by Fourier transforms: 

where H, and Yo are the zeroth-order Struve and Neumann functions, respectively. 
Equation (42) may be considered to represent the behaviour of k in the limit 

of p/a  becoming large a t  fixed bp; when bp is small, +- 3a/4p and when bp 
is large, K -+ -3a/4b2p3. Evidently there are two distance scales, a and l / b ,  
and our main interest is in the range a < p l /b .  As c = nna2 -+ 0 this range 
becomes extensive, and for all p within it will be dominated by the first term in 
(42). For purposes of examining the permeability of highly porous membranes, 
we may therefore replace (42 )  with the simpler function 

&(p) = - (3a/4p) [l -&nbp(H,(bp) - Yo(bp))] ( b  = +nna), (42) 

the constants a and /3 being of order unity. 
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The arguments of this section are far from rigorous. However, it  is perfectly 
admissible to suggest (43 ) ,  whatever the methods by which it was obtained, as 
a trial function to be inserted into (30 ) .  When this trial function is used to calcu- 
latef,p and s from (35)-(37) and the results are inserted in (30 ) ,  one obtains for 
small c 

The constants a and /3, which were introduced into (43 )  to reflect our uncertainty 
about the range over which n may be satisfactorily replaced by - 3a/4p, do not 
appear in (44 )  until the O ( p )  term ; even using (42)  in place of (43)  leaves the first 
two terms in (44)  unchanged. Equation (43)  is to be compared with the bound 

( 4 5 )  (28 )  

(44)  K < ~ ~ ( 1  +#crIna+O(a)) ( K ~  = 1/6nayn = 4 6 7 4 .  

K < KO( 1 -go- f O(g2)) 
obtained for h = 0. For sufficiently small w, (44)  will always lie below (45 ) ,  or 
for that matter below any expansion for in terms of non-negative integer 
powers of c. Since (44 )  is an upper bound on K, we have shown therefore that 
K cannot be expanded as a Taylor series in u, and that the fractional deviation 
( K ~  - K ) / K ~  of the permeability from K~ must, as CT increases from zero, go up at 
least as fast as - ZCT In u. 

Actually, although we do not have a rigorous proof, there is reason to believe 
that the first deviation of K from /c0 given by (44 )  is in fact correct. In  the following 
section, we advance a physical argument in support of this suggestion. 

7. A self-consistent field approach to permeability 
The arguments given here are patterned on Brinkman’s (1948) calculation of 

the permeability of a three-dimensional bed of spheres. Brinkman looked in detail 
at the flow around a ‘test’ sphere, treating the rest of the bed as a uniform 
continuum. In  the same spirit, we shall consider the flow around a single mem- 
brane particle imbedded in an infinite plane sheet of permeability K ,  and being 
held stationary against a mean flux U of fluid passing through the membrane 
by the application of a force f normal to the membrane. We then obtain K from 
the self-consistency condition that 

-VLf = U/K. (46) 

Let the test bead be centred a t  the origin, and consider the Auid velocity u(6) 
normal to the membrane at  a point t in the membrane plane. To keep the mem- 
brane in the vicinity of from being swept away by the flow this requires applica- 
tion of a force f = - u(E)/lc per unit area, which in turn generates a velocity per- 
turbation -f/SnqlT’- t] a t  points t’ in the membrane plane. The total velocity 
perturbation u(<) -Ti must then include both a contribution from the test 
bead and also a sum of such terms from the remaining membrane elements, so 
that the total perturbation is, using (46), 

In  writing (47) the test bead has been treated as a point particle, although strictly 
speaking the force f should have been distributed over the interior of the bead in 
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such a way as to make u vanish at all points on the bead surface. This is per- 
missible if cr is small. 

Equation (47) is identical in form to (41) for the trial function E ,  and must then 
also have the same solution: 

4 g )  - u = (f/87Tr5) ( 1  - Qnb’t;(Ho(b’S) - Yo(b’5)) 
--f (f/8n75) ( 1  +b’5lnb’g+O(b’g)) as b’g -+ 0 (b’ = 1 / 4 7 ~ ) .  (48) 

I n  analogy with (42), we expect (48) to hold in the interval a < p < l/b‘. 
We now introduce the boundary condition a t  the surface of the test bead 

by requiring that u(aa) = 0, where a is once again a constant of order unity. 
That a does not equal unity arises from the fact that  (48) is not an accurate 
approximation to u(() when 6 is comparable with a;  the actual value of a will be 
determined so as to make K --+ K~ as cr -+ 0. 

Inserting the boundary condition a t  ola into (48) gives, in conjunction with 
(461, 

K = (8nyaan)-l(l+b’aaInb’aa+O(b’aa)) --f 1/8nqaan as cr -+ 0. (49) 

Since K~ = 1/6nyan, we must have a = $. At low n, we can replace b‘ with 1 / 4 7 ~ ~ ,  
to obtain once again the expression (44) for K. 

8. Summary and conclusion 
We have used a variational method to examine the effect of long-range 

hydrodynamic interaction between membrane particles on the permeability of 
highly porous membranes. For a membrane consisting of spherical beads ran- 
domly distributed over a plane, hydrodynamic interactions introduce logarithmic 
terms into the expansion (44) of the permeability in powers of the fraction cr of 
membrane area occupied by beads, terms which become important when cr is low. 

It appears then that, to obtain bounds which can also serve as estimates of 
the permeability, it is necessary to use trial functions fi involving relative posi- 
tions of the membrane particles. Although this does complicate the evaluation of 
averages such as s(p), the main obstacle comes from the forces the particles exert 
on one another; for example, all terms beyond the first in (35)-(37) are due to 
hard-core repulsions between beads. Calculatingf, and s is a problem in statis- 
tical mechanics, not very different from the determination of equilibrium par- 
tition and distribution functions in other systems: difficult but amenable to a 
variety of approximate or computer methods. 

I n  seeking stronger permeability bounds, we must not forget that the stress 
distribution also need not be restricted to a simple superposition of contributions 
from individual beads [equation ( l 3 ) ] ,  and that extending the energy dissipation 
integral to include points lying in the interior of membrane beads [equation (IS)] 
will significantly weaken the results obtainable at higher values of G. 

Finally, although the bounds we have derived so far are valid when the mem- 
brane particles undergo lateral Brownian motion, the trial functions used do 
not explicitly contain contributions from this source. Future refinements should 
introduce trial forces with components normal to the direction of flow, to reflect 
more accurately the dynamic nature of fluctuations in membrane structure. 
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